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Abstract

Escalation of groundwater remediation costs has encouraged both advances in
optimization techniques to balance remediation objectives and economics and
development of innovative technologies to expedite source region clean-ups. We
present an optimization application building on a pump-and-treat model, yet
assuming a priori removal of different portions of the source area to address the
evolving management issue of more aggressive source remediation.  Separate
economic estimates of in-situ thermal remediation are combined with the
economic estimates of the subsequent optimal pump-and-treat remediation to
observe tradeoff relationships of cost vs. highest remaining contamination levels
(hot spot). The simulated annealing algorithm calls the flow and transport
model to evaluate the success of a proposed remediation scenario at a U.S.A.
Superfund site contaminated with volatile organic compounds (VOCs).

1  Introduction

Many researchers integrate optimization and groundwater transport
modeling to search for efficient remediation (e.g. [1]). Previous
nonlinear, large-scale, optimal, remediation design at Lawrence
Livermore National Laboratory (LLNL) has been based on 2-D
groundwater flow and transport models (GFTM) and artificial neural
networks (ANNs) trained to predict GFTM outcomes (Dowla and
Rogers[2], Rogers and Dowla[3], Rogers et al.[4], Johnson et al.[5]).
The search has been directed by a genetic algorithm (GA) or simulated
annealing (SA) optimization. This approach has advantages of 1) 106

increase in pumping pattern assessment speed during the searches and



sensitivity analyses for the 2-D LLNL work, 2) freedom from
sequential runs of the GFTM (enables workstation farming), and 3)
recycling of the knowledge base (i.e. GFTM runs to train the ANNs
(see Website:http://www-ep.es.llnl.gov/www-ep/esd/sstrans/pmp.html).
With our recent access to a Dec Alpha cluster (single GFTM runs
reduced from about 2 hr to 10 min), we opted to use an SA algorithm
which called the full GFTM for a pumping pattern assessment.

Expense and long duration of pump-and-treat remediation has
encouraged innovative in-situ technologies. LLNL has explored
thermal and biofilter technologies (see Website:http://www-
ep.es.llnl.gov/www-ep/aet/ACI/aci-home.html). Hydrous Pyrolysis
(HP) destroys contamination in situ by thermal oxidation from steam
injection. Biofilters complement steam injection by forming a
permeable wall destroying contaminants as they are pushed through it.

A 3-D nonisothermal code has been used in HP process
simulations to gauge field deployment feasibility at LLNL site (e.g.
Knapp[6]). We wanted to address how resources might be balanced
between pump-and-treat remediation and more aggressive in-situ
source remediation. We do not now have a field-scale nonisothermal
model to link to the optimization. As an approximation we consider
three cases of increasing initial source remediation with their
associated economic estimates to implement HP.

Tradeoff is used here to indicate how emphasis of one
objective compromises performance in another conflicting objective.
For our three cases we have constructed tradeoff curves based on the
SA searches to compare the economic feasibility of in-situ removal of
the contaminated source area vs. pump-and-treat remediation of the
entire plume.

2  Western USA Superfund Example

We consider a hypothetical example drawn from field measurements
of VOC groundwater contamination at a well-characterized Superfund
site at LLNL. Earlier work (e.g. Johnson et al.[5]) optimized a well
pump-and-treat/ injection strategy using a 2-D numerical GFTM. A
28-well basecase remediation obtained by expert trial-and-error
modeling was optimized. Several pumping patterns were found in the
GA-ANN search which contained the plume at estimated savings of
$102-$114.2 over 50 yr of remediation and extracted as much or
more contaminant mass than the basecase.

In this work the same 2-D hybrid finite-element/finite GFTM,
SUTRA (e.g. Voss,[7]), was used to evaluate the outcome of



remediation scenarios. The upper 200 ftÊof the saturated zone was
modeled in a vertically averaged,Êsteady-state, saturated approach.  A
2,385 element grid was superimposed on the square mile site of LLNL
and approximatelyÊ15 surrounding square miles.  Elements ranged
from 76 m on a side in the center to 610 m on a side on remote
northwest boundaries.  The model wasÊcalibrated to a larger regional
model extensively calibrated to water-tableÊconditions, known source
and sink phenomena, and other fieldÊobservations (e.g. Tompson et
al., [8]).  General direction of groundwater flow is to the west.  Flow
boundaries were no-flow fault zones to the northeast and southeast,
with flux boundaries east and distantly downgradient to the west.

Consider 3 cases: Case A: pump-and-treat from initial
condition to final, no accelerated source cleanup (Fig. 1), Case B: an
instantaneous source removal of concentration > 500 ppb then pump-
and-treat of remaining concentration (Fig. 2), and Case C: an
instantaneous source removal of concentration > 350 ppb then pump-
and-treat of remaining concentration (Fig. 3). The instantaneous
removal is an idealization to represent the fast action of HP relative
to pump-and-treat.  In-situ HP was estimated from LLNL field
experience to cost $35 per cubic yard. We refer to the cost of initial
source cleanup with HP as the Pluck Cost (i.e. cost of plucking a small
area, or cookie, out of the contaminated area.  Pluck Cost for the
cases is estimated as $0, $11 m, and $26 m, respectively.
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Concentration (ppb)

Initial Conditions of VOCs at LLNL Site
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Cost
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441.7 
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Idealized Tradeoff Curve
(over 50 years between known endpoints)

0

Figure 1: Case A: No Cookie (Pluck Cost $0). Hot spot is greatest
remaining concentration, cost and hot spot are after 50 yr of

remediation.
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Figure 2: Case B: Cookie Cut Out of > 500ppb
(Pluck Cost $11 million).
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(over 50 years between known endpoints)

26

Figure 3: Case C: Cookie Cut Out of > 350ppb
(Pluck cost $26 million).

The idealized tradeoff curves connect known endpoints of 1)
highest contamination or hot spot after 50 yr if nothing is done after
Pluck Cost and 2) search results for an optimal pump-and-treat
strategy of lowest hot spot after 50 yr of unlimited spending. An SA
search will start with possible well patterns randomly scattered
between the endpoints. At the end of the search the patterns will
cluster towards the tradeoff curve which represents the best solutions.



3  The Approach

3.1 Optimization driver

We employed the SA algorithm (e.g. Metropolis[9], Kirkpatrick[10],
Reeves[11]).  SA evolved in analogy to the annealing of solids where
initial energy of a system is raised to allow molecules to be mobile;
later the system is cooled to a lower energy crystalline form.  A
search objective such as cost is mapped onto the energy of the system
and the feasible solutions onto the state of the system.  At early times
perturbations to feasible solutions may be large; as temperature
decreases change is curtailed. Probabilistic rules control the number of
changes at given temperature steps.  This method has found success in
large-scale optimization applications including groundwater ones (e.g.
Dougherty and Marryott[12], Rizzo and Dougherty[13]).

We use two main probabilistic rules, probability of change in
creating a new possible pumping pattern and probability of acceptance
of a new pattern if is not better than the last pattern. Decision
variables are whether 30 preselected pumping wells are off or on at
their full capacity. Note any mention of temperature here refers t o
the SA search framework; it has no relation to the thermal
remediation. The probability of change, or how many of the 30
components were changed in creating a new pattern was set to 30 *
the temperature, with the decrement of temperatures, or cooling
schedule, set to the often used relationship of new temperature = old
temperature * 0.9. Probability of acceptance was an exponential
function of the current temperature and difference between old
pattern success and new pattern success (step 4 below).

About 40 SA searches were run to examine search behavior
and appropriate temperature area of interest. A possible temperature
scale of 1-0 was narrowed to .25 - .01. The runs revealed the need for
a magnification factor (step 3 below) as the small differences between
the success of our patterns led to search stagnation. We designed our
SA algorithm to benchmark against a GA; thus, our formulation has
an opposite sign to the traditional decrease of the energy of the
system. Our objective function increases like the fitness of the GA
formulation. New pattern selection may be simplified in the following
steps: 1) generation of a new pumping pattern, 2) if success of new
pattern > success of old pattern then keep new pattern else, 3)
worsening factor =  (success of old pattern - success of new pattern) *
magnification factor, 4) probability of acceptance = exp (-worsening



factor/current temperature); 5) generate a random number, 6) if
random probability < acceptance probability, keep new pattern.

3.2 Objective Function Formulation and Search

The optimization objectives were to minimize remediation cost and
minimize the hot spot after 50 yr of pump-and-treat remediation.
There are inumerable combinations of remediation objectives; we
have chosen one of interest to us.  Injection was not a decision
variable, 75% of the extracted water was reinjected to the east,
hydraulically upgradient from the extraction wells. Earlier work found
mid-site injection resulted in large pumping/treatment costs of only
lightly contaminated water. Total injection was capped at 50 gpm.  

The cost function summed well construction/maintenance and
surface treatment costs assuming constant pumping over 50 yr.
Capacity varied from well to well. An injection well was estimated t o
cost $433,000 including well construction, testing, piping, operational
and maintenance costs. Treatment costs were estimated at $.00725
per liter and operational/maintenance costs at $.00006 per liter.

It is an art to unravel how weights of individual components
of the objective function affect the final recommended solutions. We
used constant weights of objective function components with hot spot
weighted double the cost.  The objective function thus was formulated
as (1 - normalized value of the cost of remediation over 50 yr) +2 *
(1 - normalized highest remaining hot spot). Each SA search used 800
to 1000 GFTM calls.  At each temperature level 100 new patterns
were evaluated. Any time a pumping pattern with a fitness score
above 2.45 appeared in the search, it was saved for later analysis.

3.3 Construction and discussion of tradeoff curves

Our formulation involved a given number of wells at set capacities, so
our total costs fell into distinct categories. In construction of
Tradeoff Curve A solutions resulting in the lowest hot spot after 50
yr for each cost category were added to their associated Pluck Costs
(Fig. 4).  Each of the curves has a similar slope in the area where our
SA search focused, roughly 1 ppb decrease in hot spot remaining per
$10 m investment. The real gain appears to come in the initial
expenditure. Note initial expenditure of approximately $ 11 m in
Case A, results in a 30 ppb reduction after 50 yr.  To use the same
$11 m for in-situ source remediation (Case B) can result in bringing
the hot spot down 60 ppb.  Comparing an initial pump-and-treat



expenditure on Case A we see approximately a 60 ppb lowering of the
hot spot, whereas devoting the first $25 m to in-situ remediation
(Case A) would lower the hot spot approximately 90 ppb.  Note the
lowest hot spot level in this area of the curve is approximately  63,
47, and 39 for Case A, Case B, and Case C, respectively.

Another way to examine this data is shown in Tradeoff Curve
B which was constructed by estimating the difference in the total cost
of remediation between the different cases for a selected hot spot on
Tradeoff Curve A.  More resolution would have been useful along the
Tradeoff Curve A to improve the accuracy of Tradeoff Curve B;
however, some useful generalizations may be obtained from this
exercise.  If one is interested in getting the hot spot below 60,
aggressive hot spot remediation (Case C) is probably the best choice.
Between about 60 and 90 ppb, Case B and Case C are roughly
equivalent, above that Case B is probably the better choice.  This
analysis suggests for this combination of remediation objective,
proactive source remediation is overall more cost effective, especially
relative to pump-and-treat by itself.
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Figure 4: Tradeoff Curves

4  Conclusions

High remediation costs and new alternatives encourages broader
optimization formulation, increased complexity of transport t o
include in-situ technology dynamics, and more efficient optimization
methodologies. We have used here the robust SA algorithm for field-
scale multiple objective searches and used the results to construct
tradeoff curves to aid setting management priorities.
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